

Cross section measurements at the T2K near detector

Georgios Christodoulou for the T2K Collaboration

Synopsis

- Brief introduction to T2K
- $\nu_{\rm u}$ selection at the near detector ND280
 - Constraints to oscillation fits from the near detector data
 - See K. Mahn talk this afternoon
 - First Charged Current v_{μ} inclusive cross section measurement
- ν_e and NC- π^0 samples in the near detector

T2K Physics Goals

- 2012 Physics runs started on March 8
- Precision measurement of the v_e appearance signal
- ▶ Precision measurements of θ_{23} and Δm_{23}^2
- Measure various neutrino cross sections at the near detector
- Detect possible hints of CP-violation and mass hierarchy

T2K: The First Off-axis Long Baseline Accelerator Neutrino Oscillation Experiment

Data Collected And Analysed

	Run Periods			
	Run 1	Run 2	Run 3b	Run 3c
Protons on Target (x10 ²⁰)	0.323	1.108	0.214	0.911
Average Horn Current (kA)	249.7	249.7	204.7	249.8

T2K Near Detector ND280

- Measure neutrino interactions and estimate the background contaminations
 - ▶ UAI magnet 0.2T field
 - Front optimized to measure π^0 interactions (P0D)
 - Rear optimized to measure charged current interactions
 - 2 Fine Grained Detectors (FGD)
 - □ Carbon and Water targets
 - 3 Time Projection Chambers (TPC)
 - □ Tracking, dE/dx
 - Surrounded by the electromagnetic calorimeter (ECal) and muon detector

Muon neutrino selection at the near detector

$ND280 \nu_{\mu} Measurement - Run 1+2$

\mathbf{v}_{μ} interactions in FGD I

- 1.08×10²⁰ POT
- Negative track in TPC with 18 TPC hits minimum
- Vertex in the FGD1 fiducial volume
- Upstream TPC veto
- TPC dE/dx compatible with the muon hypothesis
- 4485 candidates selected
- Charge Current Quasi-Elastic (CCQE) selection
 - Only one FGD-TPC track which has to be negative
 - No Michel electrons
 - 2354 events selected
- All other events selected are classified as CC non-quasi elastic (CCnQE)

ND280 muon p-θ Distributions

CCQE

CCnQE

ND280 Systematic Uncertainties

Main CCQE fractional uncertainties

- Statistical error dominates
- B-Field distortions
 - Resolution, mis-alignment and non-linearities of the magnetic field
 - Drift electron path can be distorted due to imperfections in the magnetic field
 - Bias on the reconstructed momentum if the track shape is distorted
- Out of FGD fiducial volume events
 - Neutral particles from outside the tracker
 - Hit and track mis-reconstruction
 - Physics related
 - Secondary pion interactions
 - Absorption and charge exchange after the pion has left the nucleus

ND280 Detector Systematic Covariance

- Full 40×40 fractional covariance matrix for the all the CCQE and CCnQE systematics
 - 4 θ-bins × 5 p-bins for
 both CCQE and CCnQE

p _μ (GeV/c)	CCQE p _µ Bin	CCnQE p _µ Bin
[0, 0.4]	0-4	20-24
[0.4, 0.5]	4-8	24-28
[0.5, 0.7]	8-12	28-32
[0.7, 0.9]	12-16	32-36
[> 0.9]	16-20	36-40

Inputs To Beam And Cross Section

Beam inputs

- Binned energy spectra for all neutrino flavors
- Flux covariances between the near and far detector fluxes
 - Full MC (FLUKA)
 - \blacktriangleright External data: NA61 (π , K)
 - Measurements from beam and muon monitors

Neutrino interaction model

- NEUT for neutrino interactions
- Prior uncertainties constrainedby fits to external data

Neutrino Cross Section Parameterization And Uncertainties

	Value and Uncertainty
$M_A^{QE} (GeV/c^2)$	1.21±0.45
$M_A^{RES} (GeV/c^2)$	1.162±0.110
Fermi Momentum (MeV/c)	217±30
Spectral Function	$0(off)\pm I(on)$
CC Other Shape (GeV)	0.00±0.40
W shape (MeV/c^2)	87.7±45.3
Pion-less ∆ decay	0.2±0.04

	Value and uncertainty
CCQE Norm. 0-1.5 GeV	1.000±0.110
CCQE Norm. I.5-3.5 GeV	1.00±0.30
CCQE Norm. >3.5 GeV	1.00±0.30
CCIπ Norm. 0-2.5 GeV	1.63±0.43
CCIπ Norm. >2.5 GeV	1.00±0.40
$NCI\pi^0$ Norm	1.19±0.43
CC Coherent	1.0±1.0
NC Other	1.0±0.3

Charged Current v_{μ} inclusive cross section measurement

Differential Cross Section Measurement

• Flux averaged inclusive v_{μ} Charged Current differential cross section

$$\left\langle \frac{\partial^2 \sigma}{\partial p_{\mu} \partial \cos \theta_{\mu}} \right\rangle k l = \frac{\widehat{N_{kl}}}{T \Phi \Delta p_{\mu,k} \Delta \cos \theta_{\mu,l}}$$

- ► T → Number of target nucleons
- $\phi \rightarrow$ Integrated flux
- ▶ Δp , $\Delta cos\theta \rightarrow Bin width$
- $ightharpoonup N_{kl} \rightarrow$ The unfolded number of events in true p_μ and cosθ bins
 - Unfolding algorithm based on Bayes' theorem to provide the unsmearing matrix

The Unfolding Algorithm

$$\widehat{\mathbf{N}}_{t_k} = \frac{1}{\varepsilon_k} \sum_{j=1}^{n_r} P_m \left(t_k | r_j \right) \left(N_{r_j} - s_{POT} B_{r_j} \right)$$
Efficiency

Number of

Probability to observe an event in the true bin k, knowing that it was reconstructed in the bin j

 $P_m(t_k|r_j) = \frac{P(r_j|t_k)P_m(t_k)}{\sum_{a=1}^{n_t} P(r_j|t_a)P_m(t_a)}$

Number of predicted background events in bin j, normalized to the data POT

reconstructed

events in the bin j

The Un-smearing Matrix

Width of a box represents a momentum bin. Momentum bins are labelled by increasing momentum. For each momentum, the bins iterate through the angular bins.

True binning cosθ _μ	Recon binning $\cos \theta_{\mu}$
[-1.0, 0.0]	[-1.0, 0.84]
[0.0, 0.84]	
[0.84, 0.90]	[0.84, 0.90]
[0.90, 0.94]	[0.90, 0.94]
[0.94, 1.0]	[0.94, 1.0]

p_{μ} (GeV/c)
[0, 0.4]
[0.4, 0.5]
[0.5, 0.7]
[0.7, 0.9]
[> 0.9]

Systematics For Differential Cross Section Measurement

- Cross section model
- Detector response
- ▶ Flux
- Systematics are handled with MC reweighting by decomposing the covariance matrices
 - The RMS between the nominal and reweighted number of events are taken as the systematic
 - For spectral function and $I\pi E_{\nu}$ shape parameters the uncertainty is the influence of each in a bin when they are turned on
- Target mass
 - Taking into account the full correlations between the nuclei $\delta T/T = 0.67\%$

Differential Cross Section Result

Flux averaged CC Inclusive Cross Section

 $\langle \sigma_{CC} \rangle_{\Phi} = \left(6.93 \pm 0.13(stat) \pm 0.85(syst)\right) \times 10^{-39} \frac{cm^2}{nucleons}$

$$\langle \sigma_{CC} \rangle_{\Phi} = \frac{\widehat{N}}{T\Phi}$$

- NEUT prediction $\langle \sigma_{CC} \rangle_{\Phi} = 7.26 \times 10^{-39} \frac{cm^2}{neutrons}$
- ▶ GENIE prediction $\langle \sigma_{CC} \rangle_{\Phi} = 6.68 \times 10^{-39} \frac{cm^2}{neutrons}$

Other event samples for future cross section measurements

v_e Tracker Selection

- Interactions in both FGDs
- TPC dE/dx compatible with the electron hypothesis
- ECal shower particle identification
- Positive analysis to constraint the γ background

▶ ECal particle identification

Artificial Neural Network output compatible with the shower hypothesis

v_e Tracker Selection

Data/MC scaling factor

 $f(v_e) = 0.845 \pm 0.146 (stat.) \pm 0.107 (syst.)$

POD v_e And NC- π^0 Selection

- POD v_e high energy tail selection
 - R = (D B)/S
 - 0.91±0.13(stat.)±0.18(det.)±0.13(flux × xsec.)

▶ P0D NC-π⁰ selection

- Data/MC
 - ▶ 0.84±0.16(stat.)±0.18(syst.)
- $\frac{(Data/MC)_{NC-P0D}}{(Data/MC)_{CC-Tracker}}$
 - \rightarrow 0.81±0.15(stat.)±0.14(syst.)

Final Words

- First CC v_{μ} inclusive cross section measurement at near detector with Run I + 2 data was presented
- ν_e and NC- π^0 selection established
 - Low statistics at the moment
- More cross sections to be measured in the future

Back Up

Off-axis configuration

T2K ν_e Appearance Result

II v_e candidates observed

- 3.22±0.43 expected if $\theta_{13} = 0$
- p-value to observe 11 or more events is 0.08% (3.2σ)
- Normal hierarchy bf

$$\sin^2 2\theta_{13} = 0.094^{+0.053}_{-0.040}$$

Inverted hierarchy bf

$$\sin^2 2\theta_{13} = 0.116^{+0.063}_{-0.049}$$

Muon monitor beam direction

- Muon monitor beam direction
 - Stability << Imrad</p>

INGRID interaction rate stability

T2K: Beam Line

Flux systematics

Bin	
0-10	ND280 v_{μ}
11-12	ND280 anti- v_{μ}
13-19	ND280 v_e
20-21	ND280 anti-v _e
22-32	Far Detector ν_{μ}
33-34	Far Detector anti- ν_{μ}
35-41	Far Detector v _e
42-43	Far Detector anti-v _e
44-87	Far Detector Run3b/3c v

Beam Flux Uncertainties

- Kaon production multiplicity
- Pion production multiplicity
- Proton beam
 - Alignment and intensity
- Off-axis angle
- ▶ Horn
 - Angular alignment
 - Field asymmetry
 - Absolute current
- Production cross sections
- Target alignment
- Secondary nucleon production
- ▶ ND280 phase space

ND280 Run3 Data Cross Check With Run1+2

CC Efficiency (MC)

Fit Result From The ND280 Data

$CC \nu_{\mu}$ Inclusive Selection

Cut	Data Run1	MC Run1	Data Run2	MC Run2
CC Inclusive Selection				
Good negative track in FV	2479	2347.9	6358	6148.8
Upstream TPC veto	1741	1800.7	4502	4749.6
PID cut	1202	1266.2	3283	3440.6
CCQE Sub-Sample Selection				
TPC-FGD track = 1	664	727.4	1853	1989.9
No Michel electron	619	676.0	1735	1858.8

TPC Muon-Electron Pulls

ND280 Detector Systematics Table

Systematics	Sample	Error (%)
Pion re-interaction	Special MC	3.0
Track quality	Beam data/MC	0.1
TPC single track eff.	Beam data/MC	0.5
TPC double track eff.	Beam data/MC	0.6
TPC particle ID (PID)	Beam data/MC	0.1
TPC momentum scale	External measurements	0.5
TPC mom. distortion	Special MC	~1-7
TPC mom. resolution	Beam data/MC	2.0
TPC-FGD match. eff.	Sand interact. + cosmics	<1
Fiducial mass	External measurements	0.7
Charge mis-ID	Beam data/MC	< 0.3
Michel electron eff.	Cosmics	0.5
Cosmic rays	Special MC	0.1
Sand interactions	Special MC	1.5
Out-of-fiducial volume	Several samples	~1-9
Pileup	Beam data/MC	0.2
Track Multiplicity external bkgd	Beam data/MC	1.5

CCQE Fractional Errors

CCnQE Fractional Errors

